Janus吸收体:稳定抗盐的太阳能海水淡化

伴随着人口快速增长和日益严重的水污染问题,可饮用水资源短缺已经成为全球亟需解决的问题。太阳能海水淡化具有低成本、环境友好等优势,是一种清洁、便携的水处理技术,近年来兴起的界面光热转换技术进一步推动了太阳能海水淡化的发展。南京大学的朱嘉教授研究团队已在高效界面光热转换领域发表了一系列工作:首先成功地制备了宽频、高效的等离激元吸收体(Science Advances, e1501227 (2016));在此基础之上实现了首个基于等离激元增强效应的太阳能海水淡化器件(Nature Photonics, 393 (2016)),从而很大程度解决了系统的光学损耗问题;随后通过二维水通道设计和氧化石墨烯气凝胶结构大大降低了器件向水体的热传导损耗 (PNAS, 13953 (2016);Advanced Materials,1604031 (2017));接着提出并实现了基于仿生设计的“人工蒸腾”结构,进一步降低三项热学损耗(热传导、热对流和热辐射),大大提高了光-蒸汽转换效率(Natl. Sci. Rev.,5: 70-77, (2018) ;Advanced Materials,1606762 (2017))。

随着微纳结构调控对光-蒸汽转换效率的有效提高,如何解决海水淡化过程中吸收体本身的结盐问题及其海水淡化性能的稳定性问题成为学界、业界共同关注的焦点之一。

针对这一问题,南京大学朱嘉教授研究团队设计并合成了一种新型的“Janus吸收体薄膜”,为解决太阳能海水淡化过程中吸收体的结盐问题提供了一条有效的路径。在这一工作中,课题组通过微纳结构设计,将光吸收、水蒸发层与水传输层作功能区分,同时利用连续电纺技术制备出具有不同亲疏水性的双层结构。在太阳能海水淡化过程中,实现了水蒸发区域与无机盐离子传输区的功能性与结构性隔离,从而有效地抑制了“Janus薄膜”材料表面的结盐问题,相较于传统吸收体材料,其性能稳定性大为提升。实验发现在连续使用16天后,“Janus薄膜”材料仍能保持稳定的水输出能力(1.3 kg m-2 h-1),而传统吸收体水输出的能力则伴随使用时间延长逐渐衰减。

该“Janus薄膜”吸收体制备过程简单,成本低,且柔韧性良好,能有效抑制结盐问题,提高海水淡化性能稳定性,为这一技术的大规模应用进一步奠定了基础。

相关工作近期发表在Advanced Energy Materials (DOI: 10.1002/aenm.201702884)上。

Speak Your Mind

*